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Abstract
Padé approximants are used to find approximate vortex solutions of any winding
number in the context of Gross–Pitaevskii equation for a uniform condensate
and condensates with axisymmetric trapping potentials. Rational function and
generalized rational function approximations of axisymmetric solitary waves of
the Gross–Pitaevskii equation are obtained in two and three dimensions. These
approximations are used to establish a new mechanism of vortex nucleation as
a result of solitary wave interactions.

PACS numbers: 03.75.Lm, 47.37.+q, 67.40.Vs

1. Introduction

In the last decade the experimental realization of Bose–Einstein condensation in trapped alkali-
metal gases at ultralow temperatures has stimulated an intense interest in the production of
vortices and vortex arrays and theoretical investigations of their structure, energy, dynamics
and stability [6]. The condensates of alkali vapours are pure and dilute, so that the Gross–
Pitaevskii (GP) model which represents the so-called mean-field limit of quantum field theories
gives a precise description of the atomic condensates and their dynamics at low temperatures.
The same equation has been the subject of extensive studies also in the framework of superfluid
helium at very low temperature [5], though the high density and strong repulsive interactions
of superfluid helium restrict the applicability of the GP model so that it provides at most a
qualitative description.

In spite of the seeming simplicity of the GP model, which is a defocusing nonlinear
Schrödinger equation, that has also been extensively studied in other physical systems such as
nonlinear optics, not many asymptotic or approximate solutions have been found especially for
solitary wave solutions in more than one dimension. Typically one has to resort to numerical
integration even in the case of a simple straight line vortex. Other techniques involve power
series expansions that have a small radius of convergence and, therefore, are of a very limited
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use (see more below). The other approach involves quite elaborate asymptotic expansions
in several different regions and asymptotic matching between them ([2, 19]), which typically
yields a useful result for critical parameters of interest such as critical velocities, but the
resulting approximation of the solution is too complicated to be used on its own, either in
analytic manipulations or as an initial condition (possibly with a perturbation) for numerical
calculations. Many numerical studies use a specific vortex configuration as a starting initial
condition (see for instance [3, 13, 14, 16]) and it is desirable to have a simple approximation
to the vortex structure that can be used in such calculations.

The reason for the failure of the power series to represent the vortex solution is that series
diverge in the presence of singularities. There are techniques of a summation theory that allow
us to overcome this difficulty and represent a given function by a convergent expression. In
Euler summation this expression is the limit of a convergent series and in Borel summation
this expression is the limit of a convergent integral. But for these methods to work one has to
know all the terms of the divergent series exactly before the Euler or Borel sum can be found
approximately. Padé summation permits us to use only a few terms of the divergent series to
construct an improved estimate of the function.

In what follows we shall modify the standard Padé summation method, so that only the
general forms of the power series at zero and at infinity are used to determine the appropriate
form of the Padé approximant, but the unknown coefficients will be determined recursively
from the GP equation. The general idea is that, if the function f (x) has power series
expansions of the form xn

∑∞
i=1 pix

2i−1 around x = 0 and
∑∞

i=0 qix
−2i at infinity, then a Padé

approximation of the form

f (x) ≈
√√√√x2n

∑N
i=0 aix2i∑N+n

j=0 bjx2j
(1)

where aN = q2
0bN+n with q0 = f (∞) will have the same asymptotics at zero and infinity as

the corresponding power series.
Our paper is organized as follows. In section 2 we will derive a Padé approximation

of the straight line vortex in a uniform condensate for any winding number. Sections 3 and
4 deal with vortices in a condensate with trapping potentials including an external potential
with a laser beam. In sections 5 and 6 we develop the rational and generalized rational
function approximations of the solitary waves moving with a constant velocity in two and three
dimensions correspondingly. In section 7 we study a new mechanism of vortex nucleation as
a result of solitary wave interactions.

2. Straight line vortex in a uniform condensate

We start with the GP model [8, 9] in the form

−2i
∂ψ

∂t
= ∇2ψ + (1 − |ψ |2)ψ (2)

where we use dimensionless variables such that the unit of length corresponds to the healing
length a, the speed of sound is c = 1/

√
2, and the density at infinity is ρ∞ = 1. The solution

for the straight line vortex ψ = R(r) exp(inθ) with winding number n = 1, 2, . . . in a uniform
condensate was first obtained by Pitaevskii [17] via numerical integration of the steady GP
equation

R′′(r) +
1

r
R′(r) − n2

r2
R(r) + [1 − R2(r)]R(r) = 0 (3)
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Figure 1. (Colour online) The plots of the amplitude of the straight vortex line in a uniform
condensate as a function of distance from the centre of the vortex. The solid black line gives the
solution obtained by numerically integrating (3). Grey line—the Padé approximation (5). Short
dashed and long dashed lines give power series expansions at zero (to O(r11)) and at infinity (to
O(r−20)) correspondingly.

subject to boundary conditions R(0) = 0 and R(∞) = 1. The asymptotic expansions
for small r and large r in terms of the power series were obtained by many authors
typically for n = 1. At small r, the solution can be asymptotically approximated by
R(r) ∼ ∑∞

i=1 pir
2i−1, where the first term of the expansion p1 has to be determined

numerically (by shooting) as p1 = 0.582 781 1878 with the rest of the terms then generated
recursively as p2 = −0.072 847 648, p3 = 0.011 282 49, p4 = −0.001 781 398, . . .. The
resulting series is useful only within its radius of convergence (i.e., for r < 2.5 [15]).
Asymptotic but divergent solution at infinity can be obtained as R(r) ∼ ∑∞

i=0 qir
−2i , where

q0 = 1, q1 = − 1
2 , q2 = − 9

8 , . . .. In view of the expansion in odd powers at zero and even
power expansion at infinity a Padé approximation of the straight line vortex can be obtained
in the form (1) with n = 1 and N = 1 as

ρ(r) = R(r)2 = r2(a1 + a2r
2)

1 + b1r2 + b2r4
(4)

where we can let b2 = a2 in the view of the condition ρ → 1 as r → ∞. We substitute the
Padé approximation (4) into (3) and expand the resulting expression in series of r setting the
coefficient at equal powers of r to zero. At O(r4) we get a2 = a1(b1 − 1/4), at O(r6) we
get b1 = (5 − 32a1)/(48 − 192a1), and at O(r8) we get a1 = 11/32 as the positive root of
11 + 56a1 − 256a2

1 = 0. The resulting approximation

R(r) ∼
√

r2(0.3437 + 0.0286r2)

1 + 0.3333r2 + 0.0286r4
(5)

gives the correct asymptotic behaviour at r → 0 and at r → ∞ and approximates the
numerical solution very well everywhere. Figure 1 plots the various approximations to the
numerically found vortex solution for n = 1. Note that the procedure described above could
be formalized by rescaling both equation (3) and the trial function (4) by r → εr , equating
coefficients at powers of ε and setting ε = 1 (see also [15] for power series expansions).
This procedure will become important when we consider solutions involving more than one
variable, so that the recursive procedure can be established only by using a different scaling
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of variables. We could also rewrite equation (3) in terms of density ρ = R2(r), so that the
model equation for the straight line vortex becomes

d2ρ

dr2
+

1

r

dρ

dr
− 1

2ρ

(
dρ

dr

)2

− 2ρn2

r2
− 2ε2(ρ − 1)ρ = 0. (6)

A Padé approximation of the straight line vortex with non-unit winding number can be
obtained by observing that R(r) ∼ r |n| at r → 0, so that we need to consider the expression

ρ(r) ∼ (εr)2|n|(a1 + a2(εr)
2)∑|n|

i=0 bi(εr)2i + a2(εr)2|n|+2
. (7)

For instance, for |n| = 2 we obtained

ρ ∼ r4(0.0256 + 0.000 6264r2)

(1 + 0.191 09r2 + 0.019 6962r4 + 0.000 6264r6)
. (8)

3. Straight line vortex in a cigar-like trap

The equation for the density of a condensate in a cigar-like trap with the vortex trapped in the
centre is

d2ρ

dr2
+

1

r

dρ

dr
− 1

2ρ

(
dρ

dr

)2

− 2ρ

r2
− 2ε2(ρ − 1 + ε2λ2r2)ρ = 0 (9)

where λ is the dimensionless oscillator frequency.
For a noninteracting gas, the condensate wavefunction for a singly quantized vortex

on the symmetry axis involves the first excited radial harmonic oscillator state ψnoninter ∼
r exp

(− 1
2λ2r2

)
exp(iθ), so we seek a solution of the form

ρ(r) = ε2r2(a1 + a2ε
2r2)

1 + b1ε2r2 + b2ε4r4
exp(−ε2λ2r2) (10)

where the Taylor expansion will be taken for the exponential function. Expression (10) with
b2 = a2 is substituted into (9) and the terms up to O(ε8) are set equal to zero. We get

a2 = 1
4a1(−1 + 4λ2 + 4b1) (11)

b1 = −5 + 112λ4 − 48λ2 + 32a1(6λ2 − 1)

48(4a1 + 4λ2 − 1)
(12)

with a1 given as a positive root of

256a2
1(12λ2 − 1) + (4λ2 − 1)3(52λ2 − 11) − 8a1(384λ6 − 528λ4 + 136λ2 − 7) = 0. (13)

For example, the solution for λ = 0.2 becomes

ρ(r) = 0.2833r2 + 0.0136r4

1 + 0.2581r2 + 0.0136r4
exp(−0.04r2). (14)

Similarly to the uniform condensate case, the approximation for the multiply quantized
vortices can be found in the form

ρ(r) ∼ (εr)2|n|(a1 + a2ε
2r2)∑|n|

i=0 bi(εr)2i + a2(εr)2|n|+2
exp[−ε2λ2r2]. (15)
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Figure 2. A density contour plot in the xz-plane for a condensate containing a vortex along the
z-axis as the solution of (16) given by (18). The trap parameters are λ = 0.2 and λZ = 0.1.
Luminosity is proportional to density, the white area being the most dense.

4. Vortex in an axisymmetric condensate

A similar procedure can be implemented to find the vortex in a condensate in an axisymmetric
trap given by the external potential V = λ2r2 + λ2

Zz2. Now, the function ρ depends on two
coordinates ρ = ρ(r, z), so that the equation for ρ becomes

ρrr +
ρr

r
− ρ2

r

2ρ
− 2ρ

r2
+

1

ε2

(
ρzz − ρ2

z

2ρ

)
− 2ε2

(
ρ − 1 + ε2λ2r2 + ε4λ2

Zz2
)
ρ = 0 (16)

where we rescaled the variables as r → εr and z → ε2z. We seek a solution of the form

ρ(r, z) = ε2r2(a1 + ε2a2r
2)

1 + ε2b1r2 + ε4(b2r4 + c1z2)
exp

(−ε2λ2r2 − ε4λ2
Zz2). (17)

We solve the resulting equations to O(ε8), define all the parameters in terms of remaining
two (say c1 and a1), that are zeros of coupled polynomials, whose roots can be found
numerically by fixing λ and λZ . For instance, for λ = 0.2 and λZ = 0.1 (and setting
ε = 1) we have

ρ = 0.232 609r2 + 0.031 9011r4

1 + 0.342 901r2 + 0.031 9011r4 + 0.006 974 28z2
exp(−0.04r2 − 0.01z2). (18)

Figure 2 gives the contour plot of this solution in xz-plane. The generalization to multiply
charged vortices is carried out in a similar way to previous sections.

The asymptotics of vortices in a trapped condensate was studied by Konotop and
Perez-Garcia [12] using a sophisticated multiscale method; their solution was of the form
A tanh(ar) exp(−br2 − cz2), where A, a, b, c are some constants that needed to be estimated
numerically. The use of a Padé approximation not only provides a swift and easy tool for
generating an approximation of comparable accuracy but also has the ability to include a
z-dependence that is not confined to the exponential term.

There are different ways of creating a vortex in a trapped condensate. In particular, angular
momentum can be transmitted to the condensate by rotationally stirring it with a laser beam
[4] or by guiding a vortex created at the edge of the condensate by a laser beam towards the
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Figure 3. Plots of the density function ρ(r, z) at z = 0, 5, 10, 15 for the vortex solutions with
((21) dashed line) and without ((18) solid line) the laser beam. The form of the external potential
is depicted in the inset.

centre of condensate [20]. When the vortex is brought to rest at the centre of the condensate,
the steady external potential can be assumed to have the form

V (r, z) = λ2r2 + λZz2 + V0 exp
[−r2/r2

l

]
(19)

where rl is the half-width of the laser beam intensity profile. Our procedure for finding
the approximate solution can be automatically adjusted for finding the vortex density in the
condensate with potential (19). We seek a Padé approximant (17) as a solution of the equation

ρrr +
ρr

r
− ρ2

r

2ρ
− 2ρ

r2
+

1

ε2

(
ρzz − ρ2

z

2ρ

)

− 2ε2
(
ρ − 1 + ε2λ2r2 + ε4λ2

Zz2 + V0 exp
[−ε2r2

/
r2
l

])
ρ = 0. (20)

In particular, for V0 = rl = 0.8 we get the following solution:

ρ = 0.183 54r2 + 0.091 0069r4

1 + 0.452 004r2 + 0.091 0069r4 + 0.005 353z2
exp(−0.04r2 − 0.01z2). (21)

Figure 3 shows the r-dependent plots of (18) and (21) for various values of z. The form of the
external potential is given as an inset. Note how the laser beam causes a slight depletion of
the condensate close to the centre, followed by an increase in the density elsewhere.

5. Padé approximations of solitary waves in two dimensions

So far we have shown that Padé approximations are useful for obtaining accurate
approximations of straight line vortices. In this section we obtain approximate solutions
of solitary waves moving with a constant velocity. In a seminal paper, Jones and Roberts [10]
numerically determined the entire sequence of solitary wave solutions of the GP equation, such
as vortex rings, vortex pairs and rarefaction pulses. Their numerics involved the introduction
of stretched variables, expansion of the wavefunction in double Chebyshev–Legendre series
and a Newton–Raphson iteration of the resulting system of nonlinear algebraic equations.

We start with finding Padé approximations of solitary waves in two dimensions (2D). The
pair of two point vortices of opposite circulation centred at (0, y0) and (0,−y0) with large y0
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Figure 4. Plots of the density function ρ(0, y) for vortex pairs with separations 2y0 = 8 (a) and
2y0 = 1.78 (b) taken in a cross-section through the centres of vortices. Solid line—the approximate
solution obtained by multiplying the wavefunctions of individual vortices, dashed line—solution
obtained numerically.

can be approximated by the superposition of wavefunctions of two straight-line vortices of
opposite circulation, therefore, by the field with the density

ρ = R2
(√

x2 + (y − y0)2
)
R2

(√
x2 + (y + y0)2

)
(22)

and the phase

S = arctan

[
y − y0

x

]
− arctan

[y + y0

x

]
(23)

where R(r) is given by (5). Figure 4 illustrates how this approximates the solution obtained
numerically by a Newton–Raphson iteration of the GP equation

2iU
∂ψ

∂z
= ∇2ψ + (1 − |ψ |2)ψ (24)

subject to the boundary condition ψ → 1 as |x| → ∞. Here U is the velocity with which the
vortices of opposite circulation propel each other in the positive x-direction.

Approximation (22), (23) is sufficiently accurate for large y0, but significantly deviates
from the numerical solution as the separation between the vortices decreases. Another
difficulty in using this approximation is that one needs to know the separation 2y0 for each U
in order to construct such an approximation.

To obtain Padé approximations of 2D solitary solutions we observe that the approximation
(22), (23) written for the real u(x, y) and imaginary v(x, y) parts of the wavefunction
ψ(x, y) = √

ρ exp[iS] = u(x, y) + iv(x, y) are

u(x, y) = (
x2 + y2 − y2

0

)
R̃

(√
x2 + (y − y0)2

)
R̃

(√
x2 + (y + y0)2

)
(25)

v(x, y) = −2xy0R̃
(√

x2 + (y − y0)2
)
R̃

(√
x2 + (y + y0)2

)
where R̃(r) = R(r)/r. This suggests that a Padé approximation of the solitary wave solution
moving in x-direction with a constant velocity U can be found in the form

u(x, y) =
∑

aij x
2iy2j

1 +
∑

cij x2iy2j
v(x, y) = x

∑
bij x

2iy2j

1 +
∑

cij x2iy2j
. (26)

We truncate (26) to the lowest order that can give two zeros of the density and unity at infinity,
so we seek an approximation of the form

u(x, y) = 1 +
a00 + a10x

2 + a01y
2

1 + c10x2 + c01y2 + c20x4 + c11x2y2 + c02y4
(27)

v(x, y) = x
b00 + b10x

2 + b01y
2

1 + c10x2 + c01y2 + c20x4 + c11x2y2 + c02y4
.
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We fix the value of U, substitute (27) into equation (24), expand in powers of x and y and
set the coefficients at the first three leading orders to zero. As the result we get 12 algebraic
equations in 11 variables aij , bij and cij that are compatible and can be solved by a computer
algebra. The first two leading orders give the analytical expressions of six coefficients in terms
of remaining five. The sum of squares of the remaining six equations is further numerically
minimized on the set of remaining five coefficients.

For U = 0.4 the solution was found as

u = 1 +
−1.100 48 − 0.095 006x2 + 0.016 81y2

1 + 0.3108x2 + 0.0192x4 + 0.1030y2 + 0.0219x2y2 + 6.112 × 10−3y4
(28)

v = x(−0.818 647 − 0.069 10x2 − 0.037 56y2)

1 + 0.3108x2 + 0.0192x4 + 0.1030y2 + 0.0219x2y2 + 6.112 × 10−3y4
.

The error of approximation (28) is Err1 ≈ 0.008, where we defined

Err1 = max
x,y

(2Uvx + ∇2u + (1 − u2 − v2)u)2 + (−2Uux + ∇2v + (1 − u2 − v2)v)2. (29)

From our constructions the expressions (28) approximate the solution very well for small x
and y and give unity for the density at infinity. Two zeros of u(0, y) give the half-separation
between vortices as 0.893 997 (compare it with the value found numerically in [10] as 0.89 to
two significant digits).

We can improve the error Err1, by considering not just the global minimum of the sum
of the squares of O(ε4) error in the power series expansions about the origin, but also local
minima and choosing the one that minimizes Err1. This procedure gives us an approximate
solution with Err1 < 10−4 which is

u = 1 +
−1.090 77 − 0.098 3212x2 − 0.001 930 44y2

1 + 0.314 06x2 + 0.020 26x4 + 0.116 77y2 + 0.024 48x2y2 + 0.007 432y4
(30)

v = x(−0.811 702 − 0.071 7083x2 − 0.046 5306y2)

1 + 0.314 063x2 + 0.020 26x4 + 0.116 77y2 + 0.024 476x2y2 + 0.007 432y4
.

The energy, E, and momentum, p, of solitary wave solutions can be calculated as in [11]:

E = 1

4

∫
(1 − u2 − v2)(3 − 2u − u2 − v2) dx dy

(31)
Up = 1

2

∫
(1 − u2 − v2)2 dx dy

and are E ≈ 8.1 and p ≈ 14.2 for u and v given by (30). These values can be compared
with E ≈ 8.16 and p ≈ 14.1 found numerically in [10]. Since we relaxed the precision of
the approximation for small x and y, the half-separation between vortices lost its precision
as well, becoming 0.87. Figure 5 shows the contour and density plots of the density
ρ(x, y) = u(x, y)2 + v(x, y)2 of the approximate solution (30).

Finally we consider the third approximation, where we further relax the precision of the
approximation at the origin, but impose additional constraints at large x and y. The asymptotic
solution for large x and y was obtained in [10] as

u(x, y) ≈ 1 +
m

(
U − 1

2m
)
x2 − mU(1 − 2U 2)y2

(x2 + (1 − 2U 2)y2)2
(32)

v(x, y) ≈ − mx

x2 + (1 − 2U 2)y2
|x| → ∞
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Figure 5. The equidistant contour and density plots of the density ρ = u(x, y)2 + v(x, y)2 where
u(x, y) and v(x, y) are given by (30). Luminosity is proportional to density, the white area being
the most dense.

where m is a constant termed ‘the stretched dipole moment’ of the wave because of the factor
1 − 2U 2. If we would like our solution to have this asymptotic behaviour at infinity, we have
to let

a10 = c20m
(
U − 1

2m
)

a01 = −c20m(1 − 2U 2)U b10 = −mc20

b01 = −mc20(1 − 2U 2) c11 = 2c20(1 − 2U 2) c02 = c20(1 − 2U 2)2.
(33)

The expansion of equation (24) about zero to O(ε2) gives four equations on seven unknowns
U,m, a00, b00, c20, c10, c01. We can solve these equations analytically for c20, c10, c01 and b00.

In particular, the following approximate relation between the minimum of the real part of the
wavefunction u(0, 0) = a00 +1 and the slope of the imaginary part at the origin in the direction
of a solitary motion vx(0, 0) = b00 was found

vx(0, 0) = (u(0, 0) − 1)
16 + mU − 20U 4

7(m − 4U 3)
. (34)

Next we fix one parameter, say U, to specify one particular solution of the family, and find a00

and m that minimize the integral error

Err2 =
∫

(2Uvx + ∇2u + (1 − u2 − v2)u)2 + (−2Uux + ∇2v + (1 − u2 − v2)v)2 dV (35)

where dV = dx dy.
By implementing this procedure, we obtained the following approximation of the vortex

pair moving with U = 0.4,

u(x, y) = 1 +
−1.140 26 − 0.150 112x2 − 0.029 4564y2

1 + 0.350 22x2 + 0.030 32x4 + 0.159 05y2 + 0.041 23x2y2 + 0.014 02y4
(36)

v(x, y) = x(−0.830 953 − 0.108 296x2 − 0.073 641y2)

1 + 0.350 22x2 + 0.030 32x4 + 0.159 05y2 + 0.041 23x2y2 + 0.014 02y4

with the stretched dipole moment found as m = 3.57 (compared to the value 3.55 found
numerically in [10]). The absolute error of this approximation is Err1 ≈ 0.0018.

In order to find the solitary wave with a single zero of the wavefunction, we implement
the latter procedure by fixing a00 = −1. This will guarantee that the intersection of zeros of
real and imaginary parts is only at the origin. We found that U = 0.45,m = 3.32 and the
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Figure 6. Equidistant contour plot and 3D plot of the density ρ = u(x, y)2 + v(x, y)2 where
u(x, y) and v(x, y) are given by (37). Luminosity is proportional to density, the white area being
the most dense.

approximate solution with Err1 = 0.000 89 is

u(x, y) = 1 +
−1 − 0.137 233x2 − 0.030 3092y2

1 + 0.368 38x2 + 0.033 97x4 + 0.158 03y2 + 0.040 82x2y2 + 0.012 27y4
(37)

v(x, y) = x(−0.803 361 − 0.112 913x2 − 0.067 8506y2)

1 + 0.368 38x2 + 0.033 97x4 + 0.158 03y2 + 0.040 82x2y2 + 0.012 27y4
.

In figure 6 the contour and three-dimensional plots of ρ(x, y) are given. This solution
is interesting because it represents the borderline case between vortex pair and vortex-free
solutions.

A Padé approximation of a rarefaction pulse can be obtained similarly. For instance, if
U = 0.5 we get a00 = −0.826 and m = 3.1, so that the solution is

u(x, y) = 1 +
−0.825 937 − 0.114 393x2 − 0.027 1467y2

1 + 0.373 55x2 + 0.034 95x4 + 0.142 35y2 + 0.034 95x2y2 + 0.008 737y4
(38)

v(x, y) = x(−0.737 901 − 0.108 587x2 − 0.054 2934y2)

1 + 0.373 55x2 + 0.034 95x4 + 0.142 35y2 + 0.034 95x2y2 + 0.008 737y4
.

We will use this approximation of the rarefaction pulse in section 7, where we study vortex
nucleation.

6. Generalized rational function approximation of axisymmetric solitary waves in three
dimensions

To determine approximations of the axisymmetric vortex rings and rarefaction pulses moving
along the x-axis with the constant velocity U in three dimensions (3D), we need to solve (24)
with the Laplacian written in cylindrical coordinates

−2Uvx = uxx + uss +
1

s
us + (1 − u2 − v2)u

(39)
2Uux = vxx + vss +

1

s
vs + (1 − u2 − v2)v

where s =
√

y2 + z2. The asymptotics of the solitary waves at large distances from the origin
was found in [10] to have the form

u(x, s) ≈ 1 +
2mUx2 − 2mU(1 − 2U 2)s2

(x2 + (1 − 2U 2)s2)5/2
(40)

v(x, s) ≈ − mx

(x2 + (1 − 2U 2)s2)3/2
|x| → ∞.
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It is clear that approximation by rational functions cannot behave at large distances as (40);
therefore, we will use ‘generalized’ rational functions. In particular, we determined that among
many possibilities the following expressions give a reasonable approximation everywhere

u(x, y) = 1 +
a00 + a10x

2 + a01s
2 + mc

7/4
20 U(2x2 − (1 − 2U 2)s2)

(1 + c10x2 + c01s2 + c20(x2 + (1 − 2U 2)s2)2)7/4
(41)

v(x, y) = x
b00 + b10x

2 + b01y
2 − mc

7/4
20 (x2 + (1 − 2U 2)s2)2

(1 + c10x2 + c01s2 + c20(x2 + (1 − 2U 2)s2)2)7/4
.

From the two leading order expansions of (39) about the origin we determine a10, a01, b01, b10

and the rest of the unknowns will be found by minimizing (35), where dV = s ds dx, for a
fixed U. Among many local minima that give small Err2, we choose the one with a stretched
dipole moment close to the one obtained in [10]. In particular, the small vortex ring with
U = 0.6 and Err1 = 0.003 was found as (41) with

a00 = −1.1 a01 = 0.017 0524 a10 = 0.028 9452 m = 8.97

b00 = −0.953 b01 = −0.004 9767 b10 = −0.059 4346

c01 = 0.04 c10 = 0.21 c20 = 0.006 12.

(42)

We calculate the energy and momentum of the solitary wave solutions in 3D as (see [10])

E = π

∫ (
u2

x + u2
s + v2

x + v2
s + 1

2 (1 − u2 − v2)2
)
s ds dx

(43)
p = 2π

∫
((u − 1)vx − vux)s ds dx

to get E ≈ 58.8 and p ≈ 78 for (41) with (43), that can be compared with the values found
numerically in [10]: E ≈ 56.4 and p ≈ 78.9. The radius of the ring given by (41)–(43) is
1.059 (with 1.06 found numerically).

Finally we give our approximation of the rarefaction pulse moving with U = 0.63 found
on the lower branch of the dispersion curve calculated numerically in [10]:

a00 = −0.797 92 a01 = 0.003 880 59 a10 = 0.008 822 76 m = 8.37

b00 = −0.7981 b01 = −0.012 783 b10 = −0.057 4092

c01 = 0.0399 c10 = 0.199 c20 = 0.0058.

(44)

For this approximation of the rarefaction pulse (41)–(44) we have E ≈ 54.4, p ≈ 72.2, and
m = 8.37 (compared to numerical values found in [10]: E ≈ 52.3, p ≈ 72.2 and m = 8.37).

7. Vortex nucleation

The approximations developed in the previous sections allow one to study interactions among
the solitary wave solutions of the GP equation. Without an accurate starting point in numerical
calculations it would be impossible to separate clearly the effect of interactions from the
evolution of each solitary wave by itself as it settled down from a poor initial guess.

In this section we will use the approximations developed above to show that vortex pairs
and vortex rings can appear as a result of an interaction among the solitary wave solutions
of the GP equation. Previously, the nucleation of vortices in a uniform condensate has
been connected to critical velocities [2, 7] or instabilities of the initial states [1]. We will
show that interactions between various, even vortex-free, solitary waves result in energy and
momentum transfer that can lead to vortex nucleation. Rarefaction pulses on the lower branch
of the dispersion curve have lower energy and momentum than vortex rings; therefore, such
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t = 0 t = 7.2 t = 14.4

t = 21.6 t = 28.8 t = 36

t = 43.2 t = 50.4 t = 57.6

Figure 7. (Colour online) The snapshots of the contour plots of the density cross-section
of a condensate obtained by numerically integrating the GP model (2). Initial condition is
ψ(t = 0) = �(x − 5, 0)�(x + 5, 0), where � = u + iv, with u and v given by (41)–(44).
Black solid lines show zeros of real and imaginary parts of ψ ; therefore, their intersection shows
the position of topological zeros. Both low and high density regions are shown in darker shades to
emphasize intermediate density regions. Only a portion of an actual computational box is shown.

t = 0 t = 22.5 t = 40

Figure 8. (Colour online) The isosurface ρ/ρ∞ = 0.15 of a condensate. Initial condition is
ψ(t = 0) = �(x − 5, 0)�(x + 5, 0), where � = u + iv, with u and v given by (41)–(44). At
t = 0 the solution is vortex free. At t = 22.5 the front pulse contains a closed topological zero.
At t = 40 a well-formed vortex ring has developed with the back solution becoming too shallow
to be shown for this isosurface. Only a portion of an actual computational box is shown.

rarefaction pulse may evolve into a vortex ring if interactions with other solutions add enough
energy and momentum to the rarefaction pulse.
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t = 0 t = 15 t = 25

t = 30 t = 40 t = 70

Figure 9. (Colour online) The snapshots of the contour plots of the density cross-section of
a condensate obtained by numerically integrating the GP model (2). The initial condition is
ψ(t = 0) = �1(x, 0)�2(x + 5, s + 10)�∗

2 (x + 5, s − 10), where �1 = u + iv, with u and v given

by (41)–(44) and �2 = R(
√

x2 + y2) eiθ with R given by (5). Black solid lines show zeros of
real and imaginary parts of ψ ; therefore, their intersection shows the position of topological zeros.
Both low and high density regions are shown in darker shades to emphasize intermediate density
regions. Only a portion of an actual computational box is shown.

t = 0 t = 30 t = 83

Figure 10. (Colour online) The isosurface ρ/ρ∞ = 0.1 of a condensate. The initial condition is
ψ(t = 0) = �1(x, 0)�2(x + 5, s + 10)�∗

2 (x + 5, s − 10), where �1 = u + iv, with u and v given

by (41)–(44) and �2 = R(
√

x2 + s2) eiθ with R given by (5). At t = 0 the front pulse is vortex
free. At t = 22.5 the front pulse contains a closed topological zero. At t = 40 the front pulse
evolved into a well-formed vortex ring. Only a portion of an actual computational box is shown.

This scenario is supported by direct numerical simulations, performed with the same
numerical method as in our previous work [2, 3]. In these computations we follow the
evolution of two rarefaction pulses moving in the computational box of dimensions D3 = 803.
The faces of the box are open to allow sound waves to escape; this is achieved numerically by
applying the Raymond–Kuo technique [18].

We prepare our initial conditions by superimposing the wavefunctions ψi of solitary wave
solutions of the GP equation found in the previous sections, ψ(t = 0) = ∏

ψi . If the distance
between such solutions is large enough, then such a superposition will not lead to a significant
initial sound emission and solitary waves will preserve their form initially. Our first initial
state consists of two rarefaction pulses (41)–(44) positioned the distance 10 apart and moving
towards each other. Two pulses collide and pass through each other without loss of energy.
Next we will create a field nonuniformity by placing two rarefaction pulses a distance 10 apart
that move in the same direction. This time the effect two solitary waves have on each other is
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t = 0 t = 7.2 t = 14.4

t = 21.6 t = 28.8 t = 36

t = 43.2 t = 50.4 t = 57.6

Figure 11. (Colour online) The snapshots of the contour plots of the density of a condensate
obtained by numerically integrating the GP model (2) in 2D. Initial condition is ψ(t = 0) =
ψ1(x − 10, 0)ψ∗

1 (x + 10, 0)ψ2(x, y + 4)ψ∗
2 (x, y − 4), where ψ1 = u + iv, with u and v given by

(38) and ψ2 = R(
√

x2 + y2) eiθ with R given by (5). Black solid lines show zeros of real and
imaginary parts of ψ , therefore their intersection shows the position of topological zeros. Both low
and high density regions are shown in darker shades to emphasize intermediate density regions.
Only a portion of an actual computational box is shown.

non-symmetric. As a result, the rarefaction pulse moving behind transfers part of its energy
and momentum to the pulse moving at front, so that the latter transforms into a vortex ring
and slows down, whereas the former spreads out and speeds up. This process leads to an even
closer interaction of the two solitary waves and an even more rapid transfer of energy from
the solitary wave that moves behind to the one moving at front. Eventually almost all of the
energy and momentum of the former is transferred to the latter, which becomes a vortex ring
of energy and momentum that are only slightly less than twice the energy and momentum of
each of the initial rarefaction pulses. The remaining small energy is emitted as sound waves.
Figure 7 gives the graphical illustration of this process through the snapshots of the density
cross-sections. Figure 8 shows the density isoplots at |ψ |2 = 0.15 of the various stages of the
ring formation.
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Similarly, energy and momentum transfer takes place between different types of solitary
waves. In our next calculation we start with a rarefaction pulse followed by a large vortex ring
that moves in the same direction. Initially the distance between these two solitary waves and the
radius of the ring were taken to be 5 and 10 correspondingly. The rarefaction pulse is moving
faster than the vortex ring, so the distance between them rapidly increases. Nevertheless, there
is an energy and momentum transfer that allows the rarefaction pulse to evolve into a vortex
ring of a small radius and the large vortex ring to shrink slightly. Apart from a small loss
of energy to sound waves, the total energy of these two solitary waves is almost conserved
throughout this transformation. These processes are shown in graphical form through the
contour plots of the density cross-sections (figure 9) and the density isoplots at |ψ |2 = 0.1
(figure 10).

Similar transfer of energy and momentum from one solitary wave to another takes place
in 2D. In particular, there is a transfer of energy between solitary waves moving in the same
direction, whereas two colliding solitary waves interact elastically. Nevertheless, this elasticity
of interactions can be broken by introducing other solitary waves. As an example, we show
the evolution of an initial condition consisting of two colliding rarefaction pulses in close
vicinity of a widely separated vortex pair. As a result of the interaction, another vortex pair
is created and the resulting two pairs of vortices move apart in direction making small angles
with the positive x-axis. Figure 11 shows the snapshots of the density of a condensate at
various moments of time as the solution evolves.

8. Conclusions

In summary we have presented a new technique for finding approximate vortex solutions of
the GP equation in a uniform condensate and in condensates with axisymmetric traps. These
solutions have simple analytic expressions, correct asymptotic behaviours at zero and infinity
and approximate the entire solutions quite well elsewhere. We envision that the use of such
approximations will allow one to set up accurate initial vortex configurations for numerical
calculations and will make explicit analytic manipulations possible.

We have also developed a technique for obtaining approximations of the solitary solutions
such as vortex pairs and rarefaction pulses in two and three dimensions. The found
approximations are shown to give a very low error and have simple analytical form. These
approximations are used to elucidate the energy and momentum transfer between different
solitary wave solutions by direct numerical integration of the GP equation. The process of
vortex nucleation is one of the consequences of such a transfer.
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